Self-supervised Reinforcement Learning with Independently Controllable Subgoals Andrii Zadaianchuk^{1,2}, Georg Martius¹, Fanny Yang² ¹Max Planck Institute for Intelligent Systems ²ETH Zürich

MAX PLANCK INSTITUTE FOR INTELLIGENT SYSTEMS

Abstract

- Self-supervised agents can learn manipulation skills in multi-object environments.
- Previous methods do not take the **dependencies** between objects into account.
- We propose to estimate relations between objects and use them to independently control different objects.
- Estimated relations between objects can be used to decompose a complex goal into a compatible sequence of subgoals.
- Our **SRICS** agent can efficiently and automatically learn manipulation tasks in multi-object environments with different relations between objects.

Object Manipulation in Multi-objects Environments

Multi-object Rearrange and Relational Rearrange environments

- Random initial state position and final goal position for each object
- Action space: robot end effector position
- •In Relational Rearrange some objects can be connected (by spring connection) or static

Object-centric Representations

- Scene is encoded as a set of vectors
- All the entities (including agent) are encoded with the same format
- Similar representation could be learned fullyunsupervised from high-dimensional observations

SRICS

 $d_{\mathsf{int}}(\mathbf{h}_t^i, \mathbf{h}_t^j) = w_t^{ij} \cdot d_{\mathsf{int-eff}}(\mathbf{h}_t^i, \mathbf{h}_t^j); \quad q\left(w_t^{ij} \mid \mathbf{s}_t\right) = \operatorname{softmax}\left(d_{\mathsf{int-pres}}(\mathbf{h}_t^i, \mathbf{h}_t^j)\right).$ • Training of the dynamical model using ELBO loss: || indexe $||^2$

$$\mathcal{L} = \sum_{j=1}^{K} \sum_{t=1}^{T-1} \frac{\left\| \mathbf{s}_{t+1}^{j,\text{where}} - \hat{\mathbf{s}}_{t+1}^{j,\text{where}} \right\|}{2\sigma^2} + D_{\text{KL}}(q \mid\mid p_{\text{prior}}).$$

•Local interaction weights w_t^{ij} are sparse due to sparsity prior p_{prior} . • Global interaction graph G: aggregated over dataset and thresholded local interaction weights.

Independently Controllable Subgoals

$$\mathbf{g}^i = \left(\mathbf{s}^{\mathsf{goal},i}, \mathcal{P}^i
ight)$$

- • \mathcal{P}^i are the nodes that lie in a path from the action A and object i
- • \mathcal{P}^i correspond to the objects that could be used to control object i

Goal-directed Selectivity Reward

obj 3rd obj 4th obj

 $r_{\mathsf{sel},i}\left(\mathbf{s}_{t}, \mathbf{s}_{t-1}, \mathbf{g}^{i}\right) = r_{\mathsf{goal}} + \alpha\left(\operatorname{sel}_{i}(\mathbf{s}_{t}, \mathbf{s}_{t-1}, \mathcal{P}^{i}) - 1\right)$ $r_{\mathsf{goal}} = -\|\mathbf{s}_t^i - \mathbf{s}^{\mathsf{goal},i}\|$ $\int \frac{||\mathbf{s}_{t} - \mathbf{s}_{t-1}||}{\sum_{j \notin \mathcal{P}^{i}} ||\mathbf{s}_{t}^{j} - \mathbf{s}_{t-1}^{j}||}, \text{ if subgoal is not solved;}$ $\operatorname{sel}_i(\mathbf{s}_t, \mathbf{s}_{t-1}, \mathcal{P}^i) =$ $1 - \sum_{j \notin \mathcal{P}^i \cup \{i\}} \|\mathbf{s}_t^j - \mathbf{s}_{t-1}^j\|$, otherwise.

• Motivates agent to solve subgoal i without destroying subgoals in \mathcal{P}^i

SRICS Training

Given: GNN dynamical model D, goal-conditional attention policy π_{θ} , goal-conditional SAC trainer, number of training episodes K

- Train GNN dynamical model D on sequences from \mathcal{D} using the ELBO loss and estimate the interaction graph G.
- for n = 1, ..., K episodes do
- Sample goal \mathbf{s}^{goal} and construct subgoal \mathbf{g}^i using G.
- Collect episode data with policy $\pi_{\theta}(\mathbf{a}_t \mid \mathbf{s}_t, \mathbf{g}^i)$.
- Store transitions $\{(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}, \mathbf{g}^i), \ldots\}$ into replay buffer \mathcal{R} .
- Sample transitions from replay buffer $(\mathbf{s}, \mathbf{a}, \mathbf{s}', \mathbf{g}^i) \sim \mathcal{R}$.
- Relabel \mathbf{g}^i goal components to a combination of future states and goal sampling distribution.
- Compute selectivity reward signal $R = r_{\text{sel},i}(\mathbf{s}', \mathbf{s}, \mathbf{g}^i)$.
- Update policy $\pi_{\theta}(\mathbf{a}_t \mid \mathbf{s}_t, \mathbf{g}^i)$ using R with SAC trainer.
- end for

SRICS Evaluation

Agent with compositional skills, π

• Decompose to subgoals

References

[1] Andrew Levy, George Dimitri Konidaris, Robert Platt Jr., and Kate Saenko. Learning multi-level hierarchies with hindsight. In ICLR, 2019. [2] Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised visual reinforcement learning with object-centric representations. In ICLR, 2021.

FINZURICH

Subgoals ordering during evaluation

Comparative Analysis